DataSheet.es    


PDF HIP6016 Data sheet ( Hoja de datos )

Número de pieza HIP6016
Descripción Advanced PWM and Dual Linear Power Control
Fabricantes Intersil Corporation 
Logotipo Intersil Corporation Logotipo



Hay una vista previa y un enlace de descarga de HIP6016 (archivo pdf) en la parte inferior de esta página.


Total 14 Páginas

No Preview Available ! HIP6016 Hoja de datos, Descripción, Manual

Data Sheet
HIP6016
January 1999 File Number 4566.1
Advanced PWM and Dual Linear Power
Control
The HIP6016 provides the power control and protection for
three output voltages in high-performance microprocessor
and computer applications. The IC integrates a PWM
controller, a linear regulator and a linear controller as well as
the monitoring and protection functions into a single
package. The PWM controller regulates the microprocessor
core voltage with a synchronous-reThanctified buck
converter. The linear controller regulates power for the GTL
bus and the linear regulator provides power for the clock
driver circuit.
The HIP6016 includes an Intel-compatible, TTL 5-input
digital-to-analog converter (DAC) that adjusts the core PWM
output voltage from 2.1VDC to 3.5VDC in 0.1V increments
and from 1.3VDC to 2.05VDC in 0.05V steps. The precision
reference and voltage-mode control provide ±1% static
regulation. The linear regulator uses an internal pass device
to provide a fixed 2.5V ±2.5%. The linear controller drives an
external N-channel MOSFET to provide a fixed 1.5V ±2.5%.
The HIP6016 monitors all the output voltages. A single
Power Good signal is issued when the core is within ±10% of
the DAC setting and the other levels are above their under-
voltage levels. Additional built-in over-voltage protection for
the core output uses the lower MOSFET to prevent output
voltages above 115% of the DAC setting. The PWM over-
current function monitors the output current by using the
voltage drop across the upper MOSFET’s rDS(ON),
eliminating the need for a current sensing resistor.
Pinout
HIP6016
(SOIC)
TOP VIEW
VCC 1
VID4 2
VID3 3
VID2 4
VID1 5
VID0 6
PGOOD 7
FAULT 8
SS 9
RT 10
VSEN2 11
VIN2 12
24 UGATE
23 PHASE
22 LGATE
21 PGND
20 OCSET
19 VSEN1
18 FB
17 COMP
16 VSEN3
15 GATE3
14 GND
13 VOUT2
Features
• Provides 3 Regulated Voltages
- Microprocessor Core, Clock and GTL Power
• Drives N-Channel MOSFETs
• Operates from +3.3V, +5V and +12V Inputs
• Simple Control Design
- Single-Loop Voltage-Mode PWM Control
- Fixed 1.5V GTL Output Voltage
- Fixed 2.5V Clock Output Voltage
• Fast Transient Response
- High-Bandwidth Error Amplifier
- Full 0% to 100% Duty Ratio
• Excellent Output Voltage Regulation
- Core PWM Output: ±1% Over Temperature
- Other Outputs: ±2.5% Over Temperature
• TTL-Compatible 5-Bit Digital-to-Analog Core Output
Voltage Selection
- Wide Range . . . . . . . . . . . . . . . . . . . 1.3VDC to 3.5VDC
- 0.1V Steps . . . . . . . . . . . . . . . . . . . . 2.1VDC to 3.5VDC
- 0.05V Steps . . . . . . . . . . . . . . . . . . 1.3VDC to 2.05VDC
• Power-Good Output Voltage Monitor
• Microprocessor Core Voltage Protection Against Shorted
MOSFET
• Over-Voltage and Over-Current Fault Monitors
- Does Not Require Extra Current Sensing Element,
Uses MOSFET’s rDS(ON)
• Small Converter Size
- Constant Frequency Operation
- 200kHz Free-Running Oscillator; Programmable from
50kHz to over 1MHz
Applications
Full Motherboard Power Regulation for Computers
Low-Voltage Distributed Power Supplies
Ordering Information
TEMP. RANGE
PART NUMBER
(oC)
PACKAGE PKG. NO.
HIP6016CB
0 to 70
24 Ld SOIC M24.3
2-196
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999

1 page




HIP6016 pdf
HIP6016
Electrical Specifications Recommended Operating Conditions, Unless Otherwise Noted. Refer to Figures 1, 2 and 3 (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN TYP MAX UNITS
Slew Rate
SR COMP = 10pF
- 6 - V/µs
PWM CONTROLLER GATE DRIVER
Upper Drive Source
Upper Drive Sink
Lower Drive Source
Lower Drive Sink
PROTECTION
IUGATE
RUGATE
ILGATE
RLGATE
VCC = 12V, VUGATE (or VGATE2) = 6V
VUGATE-PHASE = 1V
VCC = 12V, VLGATE = 1V
VLGATE = 1V
-1-
- 1.7 3.5
-1-
- 1.4 3.0
A
A
VOUT1 Over-Voltage Trip
FAULT Sourcing Current
OCSET Current Source
Soft-Start Current
Chip Shutdown Soft-Start Threshold
IOVP
IOCSET
ISS
VSEN1 Rising
VFAULT = 10V
VOCSET = 4.5VDC
112 115 118
10 14
-
170 200 230
- 11 -
- - 1.0
%
mA
µA
µA
V
POWER GOOD
VOUT1 Upper Threshold
VOUT1 Under Voltage
VOUT1 Hysteresis (VSEN1/DACOUT)
PGOOD Voltage Low
VPGOOD
VSEN1 Rising
VSEN1 Rising
Upper/Lower Threshold
IPGOOD = -4mA
108 - 110
92 - 94
-2-
- - 0.5
%
%
%
V
Typical Performance Curves
1000
100
RT PULLUP
TO +12V
10
RT PULLDOWN TO VSS
10 100
SWITCHING FREQUENCY (kHz)
FIGURE 4. RT RESISTANCE vs FREQUENCY
1000
100
CUGATE = CLGATE = CGATE
80
VVCC = 12V
VIN = 5V
60
40
CGATE = 4800pF
CGATE = 3600pF
CGATE = 1500pF
20
CGATE = 660pF
0
100 200
300 400 500 600 700 800
SWITCHING FREQUENCY (kHz)
900 1000
FIGURE 5. BIAS SUPPLY CURRENT vs FREQUENCY
2-200

5 Page





HIP6016 arduino
HIP6016
VOSC
OSC
PWM
COMP
-
+
DRIVER
DRIVER
ZFB
VE/A
- ZIN
+
ERROR
AMP
REFERENCE
VIN
LO VOUT
PHASE
CO
ESR
(PARASITIC)
DETAILED FEEDBACK COMPENSATION
C2
C1 R2
ZFB VOUT
ZIN
C3 R3
COMP
- FB
+
HIP6016
REFERENCE
R1
FIGURE 11. VOLTAGE-MODE BUCK CONVERTER
COMPENSATION DESIGN
a closed loop transfer function with an acceptable 0dB
crossing frequency (f0dB) and adequate phase margin.
Phase margin is the difference between the closed loop
phase at f0dB and 180 degrees. The equations below relate
the compensation network’s poles, zeros and gain to the
components (R1, R2, R3, C1, C2, and C3) in Figure 11.
Use these guidelines for locating the poles and zeros of the
compensation network:
1. Pick Gain (R2/R1) for desired converter bandwidth
2. Place 1ST Zero Below Filter’s Double Pole (~75% FLC)
3. Place 2ND Zero at Filter’s Double Pole
4. Place 1ST Pole at the ESR Zero
5. Place 2ND Pole at Half the Switching Frequency
6. Check Gain against Error Amplifier’s Open-Loop Gain
7. Estimate Phase Margin - Repeat if necessary
Compensation Break Frequency Equations
FZ1 = 2----π-----×-----R---1--2-----×----C-----1--
FP1
=
---------------------------1----------------------------
2
π
×
R2
×
C-C----11-----+×-----CC-----22--
FZ2 = 2----π-----×-----(--R-----1-----+-1----R-----3----)---×-----C-----3--
FP2 = -2---π-----×-----R---1--3-----×----C-----3--
Figure 12 shows an asymptotic plot of the DC-DC converter’s
gain vs. frequency. The actual modulator gain has a peak due
to the high Q factor of the output filter at FLC, which is not
shown in Figure 12. Using the above guidelines should yield a
compensation gain similar to the curve plotted. The open loop
error amplifier gain bounds the compensation gain. Check the
compensation gain at FP2 with the capabilities of the error
amplifier. The closed loop gain is constructed on the log-log
graph of Figure 12 by adding the modulator gain (in dB) to the
compensation gain (in dB). This is equivalent to multiplying
the modulator transfer function to the compensation transfer
function and plotting the gain.
100
FZ1 FZ2 FP1 FP2
80
OPEN LOOP
60 ERROR AMP GAIN
40
20LOG
20 (R2/R1)
0 MODULATOR
GAIN
-20
20LOG
(VIN/VOSC)
COMPENSATION
GAIN
CLOSED LOOP
-40 GAIN
FLC FESR
-60
10 100 1K 10K 100K 1M 10M
FREQUENCY (Hz)
FIGURE 12. ASYMPTOTIC BODE PLOT OF CONVERTER GAIN
The compensation gain uses external impedance networks
ZFB and ZIN to provide a stable, high bandwidth loop. A stable
control loop has a 0dB gain crossing with -20dB/decade slope
and a phase margin greater than 45 degrees. Include worst
case component variations when determining phase margin.
Component Selection Guidelines
Output Capacitor Selection
The output capacitors for each output have unique
requirements. In general the output capacitors should be
selected to meet the dynamic regulation requirements.
Additionally, the PWM converters require an output capacitor
to filter the current ripple. The linear regulator is internally
compensated and requires an output capacitor that meets
the stability requirements. The load transient for the
microprocessor core requires high quality capacitors to
supply the high slew rate (di/dt) current demands.
PWM Output Capacitors
Modern microprocessors produce transient load rates above
10A/ns. High frequency capacitors initially supply the transient
and slow the current load rate seen by the bulk capacitors.
The bulk filter capacitor values are generally determined by
the ESR (effective series resistance) and ESL (effective series
inductance) parameters rather than actual capacitance.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
2-206

11 Page







PáginasTotal 14 Páginas
PDF Descargar[ Datasheet HIP6016.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
HIP6011Buck Pulse-Width Modulator (PWM) Controller and Output Voltage MonitorIntersil Corporation
Intersil Corporation
HIP6012Buck and Synchronous-Rectifier Pulse-Width Modulator (PWM) ControllerIntersil Corporation
Intersil Corporation
HIP6013Buck Pulse-Width Modulator (PWM) ControllerIntersil Corporation
Intersil Corporation
HIP6014Buck and Synchronous-Rectifier (PWM) Controller and Output Voltage MonitorIntersil Corporation
Intersil Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar