DataSheet.es    


PDF IR3522 Data sheet ( Hoja de datos )

Número de pieza IR3522
Descripción DDR & VTT CONTROL IC
Fabricantes International Rectifier 
Logotipo International Rectifier Logotipo



Hay una vista previa y un enlace de descarga de IR3522 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! IR3522 Hoja de datos, Descripción, Manual

IR3522
DATA SHEET
XPHASE3TM DDR & VTT CONTROL IC
DESCRIPTION
The IR3522 Control IC combined with IR3506 xPHASE3TM Phase ICs implements a full featured DDR3
power solution. The IR3522 provides control functions for both the VTT (single phase) and VDDR
(multiphase) power rails which can interfaces with any number of IR3506 ICs each driving and monitoring
a single phase to power any number of DDR3 DIMMs. The xPHASE3TM architecture delivers a power
supply that is smaller, more flexible, and easier to design while providing higher efficiency than
conventional approaches.
FEATURES
I2C interface programs 1.025V< VREF1<1.612V, the VDD output voltage reference
I2C also programs the VTT tracking ratio ± 25 %, and provides digital ON/OFF control
Four different I2C addresses are selectible using 2 ADDR pins
Four different VREF1 voltages are selectible using 2 VID pins if I2C communication is not available
VTT tracking defaults to ½ the VDD Remote Sense Amp output voltage
Power Good output driven by an external bias input
VDD to VTT overvoltage protection
Soft-Stop turn-off to ensure VDDR and Vtt tracking
Fault activated Crowbar pin to drive external NMOS devices for external output voltage protection
Pin programmable slew rate of I2C programmed VREF1 voltage transitions
0.5% overall VDD system set point accuracy
Remote sense amplifiers provide differential sensing and requires less than 50uA bias current
Pin programmable per phase switching frequency of 250kHz to 1.5MHz
Complete protection including over-current, over-voltage, open remote sense, and open control
APPLICATION CIRCUIT
12V
VCCL
www.DataSheet4U.com
PGOOD
SCL
SDA
CVCCL
12V To Converters
VCCL To Phase IC
VCCL & GATE
DRIVE BIAS
Phase Clock Input to
PHSIN Last Phase IC of VDD
PHSOUT
CLKOUT
2 wire Digital
Daisy Chain Bus
to Phase ICs
ENABLE
RPGBIAS
ROCSET2
1 SD A
2 PGBIAS
3 EN ABLE
4
IIN2
5 AD DR1
6
AD DR2
7 OCSET2
8 EAOUT2
IR3522
CONTROL
IC
LGND
ROSC
CROWBAR
IIN1
SS/ DEL1
VREF 1
OCSET1
EAOUT1
24
23
22
21
20
19
18
17
ROSC
RVR EF
ROCSET1
CSS/DEL
CVREF
Drives NMOS crowbar
CROWBAR devices at VTT and
VDDR rails
To Vtt
Remote
Sense
VTT SENSE +
VTT SENSE -
Page 1
RCP2 CCP21
CCP22
RFB22 CFB2
R FB21
CFB1 RFB12
RFB11
R CP1 CCP11
CCP12
Figure 1 – IR3522 Application Circuit
ISHARE1
EAOUT1
VREF1
EAOUT2
ISHARE2
5 Wire Analog
Phase IC
Control Bus
DDR SENSE +
DDR SENSE -
To VDD
Remote
Sense
V3.01

1 page




IR3522 pdf
IR3522
RECOMMENDED OPERATING CONDITIONS FOR RELIABLE OPERATION WITH MARGIN
4.75V VCCL 7.5V, -0.3V VOSEN-x 0.3V, 0 oC TJ 100 oC, 7.75 kΩ ≤ ROSC 50 k, CSS/DEL1 = 0.1uF
ELECTRICAL CHARACTERISTICS
The electrical characteristics table list the spread of critical values that are guaranteed to be within the recommended
operating conditions (unless otherwise specified). Typical values represent the median values, which are related to 25°C.
PARAMETER
SVID Interface
SCL & SDA Input Thresholds
Bias Current
SDA Low Voltage
SDA Output Fall Time
Pulse width of spikes suppressed
by the input filter
ADDRx Internal Pull-up
ADDRx Threshold Voltage
ADDRx Float Voltage
Oscillator
PHSOUT Frequency
TEST CONDITION
Threshold Increasing
Threshold Decreasing
Threshold Hysteresis
0V V(x) 3.5V, SDA not asserted
I(SDA)= 3mA
0.7 x VDD to 0.3 x VDD, 1.425V VDD
1.9V, 10 pF Cb 400 pF,
Cb=capacitance of one bus line (Note 1)
Note 1
Pull-up to 3.3 V typical
MIN
1.265
1.04
150
-5
20+ 0.1
xCb(pF)
85
50
1.38
3.1
-10%
ROSC Voltage
CLKOUT High Voltage
I(CLKOUT)= -10 mA, measure V(VCCL) –
V(CLKOUT).
CLKOUT Low Voltage
I(CLKOUT)= 10 mA
PHSOUT High Voltage
I(PHSOUT)= -1 mA, measure V(VCCL) –
V(PHSOUT)
PHSOUT Low Voltage
I(PHSOUT)= 1 mA
www.DataShPeHetS4UIN.cTomhreshold Voltage
Compare to V(VCCL)
Remote Sense Differential Amplifiers
Unity Gain Bandwidth
Note 1
Input Offset Voltage
1.025 V V(VOSEN1+) - V(VOSEN1-)
1.6125 V, 385mV V(VOSEN2+) -
V(VOSEN2-) 1.021 V, Note 2
Source Current
1.025 V V(VOSEN1+) - V(VOSEN1-)
1.6125 V, 385mV V(VOSEN2+) -
V(VOSEN2-) 1.021 V
Sink Current
1.025 V V(VOSEN1+) - V(VOSEN1-)
1.6125 V, 385mV V(VOSEN2+) -
V(VOSEN2-) 1.021 V
Slew Rate
1.025 V V(VOSEN1+) - V(VOSEN1-)
1.6125 V, 385mV V(VOSEN2+) -
V(VOSEN2-) 1.021 V Note 1.
VOSEN+ Bias Current
1.025 V V(VOSEN1+) - V(VOSEN1-)
1.6125 V, 385mV V(VOSEN2+) -
V(VOSEN2-) 1.021 V
VOSEN- Bias Current
1.025 V V(VOSEN1+) - V(VOSEN1-)
1.6125 V, 385mV V(VOSEN2+) -
V(VOSEN2-) 1.021 V, All VID Codes
Low Voltage
V(VCCL) =7V
High Voltage
V(VCCL) – V(VOUTx)
0.57
30
3.0
-3
3
300
2
1.2
TYP
1.325
1.1
225
0
20
260
100
1.65
3.3
See
Figure 2
0.600
50
6.4
0
7
450
4
30
30
1.8
MAX
1.385
1.16
300
5
300
250
550
250
1.94
3.5
+10%
0.630
1
1
1
1
70
9.0
3
15
650
8
50
50
40
2.3
UNIT
V
V
mV
uA
mV
ns
ns
k
V
V
kHz
V
V
V
V
V
%
MHz
mV
mA
uA
V/us
uA
uA
mV
V
Page 5
V3.01

5 Page





IR3522 arduino
IR3522
PHASE IC
CLOCK
PULSE
EAIN
PWMRMP
VDAC
GATEH
GATEL
STEADY-STATE
OPERATION
DUTY CYCLE INCREASE
DUE TO LOAD
INCREASE
DUTY CYCLE DECREASE
DUE TO VIN INCREASE
(FEED-FORWARD)
DUTY CYCLE DECREASE DUE TO LOAD
DECREASE (BODY BRAKING) OR FAULT
(VCC UV, OCP, VID FAULT)
Figure 5 PWM Operating Waveforms
STEADY-STATE
OPERATION
Lossless Average Inductor Current Sensing
Inductor current can be sensed by connecting a series RC network in parallel with the inductor and measuring the
voltage across the capacitor, as shown in Figure 6. The equation of this sensing network is,
vC
(s)
=
vL
(s)
1
+
1
sRCS
CCS
=
iL
(s)RL
1+
1+
s(L
sRCS
RL )
CCS
.
Usually, the resistor Rcs and capacitor Ccs are chosen so that the RC time constant equals the time constant of the
inductor which is the inductance L divided by the inductor’s DCR (RL). If the two time constants match, the voltage
across Ccs is proportional to the current through L, and the sense circuit can be treated as if only a sense resistor
with the value of RL was used. The mismatch of the time constants does not affect the measurement of inductor DC
current, but affects the AC component of the inductor current.
www.DataSheet4U.com
vL
iL L
RL
RCS
Current
Sense Amp
CSOUT
CCS
vCcS
VO
CO
Figure 6 Inductor Current Sensing and Current Sense Amplifier
The advantage of sensing the inductor current versus high side or low side sensing is that actual output current
being delivered to the load is obtained rather than peak or sampled information about the switch currents. The
output voltage can be positioned to meet a load line based on real time information. Except for a sense resistor in
series with the inductor, this is the only sense method that can support a single cycle transient response. Other
methods provide no information during either load increase (low side sensing) or load decrease (high side sensing).
Page 11
V3.01

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet IR3522.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
IR352018+0/7+1/6+2 Dual Output Digital Multi-Phase ControllerInternational Rectifier
International Rectifier
IR352036+1 Dual Output Digital Multi-Phase ControllerInternational Rectifier
International Rectifier
IR352043+1 Dual Output Digital Multi-Phase ControllerInternational Rectifier
International Rectifier
IR3521XPHASE3 AMD SVID CONTROL ICInternational Rectifier
International Rectifier

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar