DataSheet.es    


PDF IR3084A Data sheet ( Hoja de datos )

Número de pieza IR3084A
Descripción XPHASE TM VR 10/11 CONTROL IC
Fabricantes International Rectifier 
Logotipo International Rectifier Logotipo



Hay una vista previa y un enlace de descarga de IR3084A (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! IR3084A Hoja de datos, Descripción, Manual

IR3084A
Data Sheet No. PD. 94721
XPHASETM VR 10/11 CONTROL IC
DESCRIPTION
The IR3084A Control IC combined with an IR XPhaseTM Phase IC provides a full featured and flexible
way to implement a complete VR10 or VR11 power solution. The “Control” IC provides overall system
control and interfaces with any number of “Phase” ICs which each drive and monitor a single phase of a
multiphase converter. The XPhaseTM architecture results in a power supply that is smaller, less
expensive, and easier to design while providing higher efficiency than conventional approaches.
FEATURES
www.DataSheet4U.com
1 to X phase operation with matching Phase IC
Supports both VR11 8-bit VID code and extended VR10 7-bit VID code
0.5% Overall System Setpoint Accuracy
VID Select pin sets the DAC to either VR10 or VR11
VID Select pin selects either VR11 or legacy VR10 type startups
Programmable VID offset and Load Line output impedance
Programmable VID offset function at the Error Amp’s non-inverting input allowing zero offset
Programmable Dynamic VID Slew Rate
±300mV Differential Remote Sense
Programmable 150kHz to 1MHz oscillator
Enable Input with 0.85V threshold and 100mV of hysteresis
VR Ready output provides indication of proper operation and avoids false triggering
Phase IC Gate Driver Bias Regulator / VRHOT Comparator
Operates from 12V input with 9.9V Under-Voltage Lockout
6.9V/6mA Bias Regulator provides System Reference Voltage
Programmable Hiccup Over-Current Protection with Delay to prevent false triggering
Small thermally enhanced 5mm x 5mm, 28 pin MLPQ package
TYPICAL APPLICATION CIRCUIT
VCC_SENSE
VSS_SENSE
RT2
4.7K,
R117
B=44501.21K
RFB1
162
CFB
10nF
C1009
100pF
RFB
324
CCP1
100pF
RCP
2.49K
CCP
56nF
+5.0V
RDRP
787
17 FB
18
EAOUT VRRDY
IIN
RMPOUT
27
15
19
VBIAS 20
IR3084MTR
R137
2K
C134
0.1uF
EA
VREG_12V_FILTERED
VR_RDY
ISHARE
RMP
C89
100pF
VBIAS
R1331
1
Q4
CJD200
C204
0.1uF
OUTEN
VID0
VID1
VID2
VID3
VID4
VID5
VID6
VID7
VID_SEL
VREG_12V_FILTERED
R30
10
C130
0.1uF
16 VDRP
REGDRV 24
28
9
8
7
6
5
4
3
2
1
ENABLE
VID0
VID1
VID2
VID3
VID4
VID5
VID6
VID7
VIDSEL
21 VCC
26
CSS/DEL
SS/DEL
REGFB
REGSET
23
25
VSETPT
OCSET
RVSETPT
124
14
ROCSET
13
15.8K
VDAC
ROSC
12
ROSC 30.1K
11
0.1uF
VOSNS--
LGND 22
10
RVGDRV
97.6K
CVGDRV
10nF
RVDAC
3.5
VDAC
CVDAC
33nF
VGDRIVE
C135
1uF
Page 1 of 45
10/30/2006

1 page




IR3084A pdf
IR3084A
PARAMETER
TEST CONDITION
VRRDY OUTPUT
Output Voltage
Leakage Current
I(VRRDY) = 4mA
V(VRRDY) = 5.5V
OSCILLATOR
Switching Frequency
Peak Voltage (4.8V typical,
measured as % of VBIAS)
Valley Voltage (0.9V typical,
measured as % of VBIAS)
DRIVER BIAS REGULATOR
REGSET Bias Current
Input Offset Voltage
Short Circuit Current
Dropout Voltage
1.5V ” 9 5(*6(7 ” 9&& – 1.5V
1.5V ” 9 5(*6(7 ” 9&& – 1.5V,
100µA ” , 5(*'59 ” P$
V(REGDRV) = 0V,
1.5V ” 9 5(*6(7 ” 9&& – 1.5V,
Note 1
I(REGDRV) = 10mA, Note 1
VCC UNDERíVOLTAGE LOCKOUT
Start Threshold
Stop Threshold
Hysteresis
Start – Stop
GENERAL
VCC Supply Current
VOSNSí &XUUHQW
í0.3V ” VOSNSí ” 0.3V,
All VID Codes
MIN TYP
150
0
450 500
70 72
10 13
í112
í12
í99
0
10 20
0.4 0.87
9.3 9.9
8.5 9.1
575 800
9
í1.45
14
í1.3
Note 1: Guaranteed by design but not tested in production
Note 2: VDAC Output is trimmed to compensate for Error Amp input offsets errors
MAX
300
10
550
74
15
í85
12
50
1.33
10.3
9.5
1000
18
í0.75
UNIT
mV
µA
kHz
%
%
µA
mV
mA
V
V
V
mV
mA
mA
IR3084
+
"FAST"
VDAC
-
+
-
ISOURCE
ISINK
VDAC
BUFFER
AMP
200 OHM
EAOUT
ERROR
AMP
FB
VSETPT
OCSET
VDAC
IOFFSET IROSC
IROSC IOCSET
RVDAC
CURRENT
SOURCE
GENERATOR
ROSC
BUFFER
AMP
CVDAC
ROSC
+
1.2V
-
VOSNS-
R OSC
Page 5 of 45
Figure 1 – System Set Point Test Circuit
200 OHM
SYSTEM
SET POINT
VOLTAGE
10/30/2006

5 Page





IR3084A arduino
IR3084A
The advantage of sensing the inductor current versus high side or low side sensing is that actual output current
being delivered to the load is obtained rather than peak or sampled information about the switch currents. The
output voltage can be positioned to meet a load line based on real time information. Except for a sense resistor in
series with the inductor, this is the only sense method that can support a single cycle transient response. Other
methods provide no information during either load increase (low side sensing) or load decrease (high side
sensing).
An additional problem associated with peak or valley current mode control for voltage positioning is that they
suffer from peakítoíaverage errors. These errors will show in many ways but one example is the effect of
frequency variation. If the frequency of a particular unit is 10% low, the peak to peak inductor current will be 10%
larger and the output impedance of the converter will drop by about 10%. Variations in inductance, current sense
amplifier bandwidth, PWM prop delay, any added slope compensation, input voltage, and output voltage are all
additional sources of peakítoíaverage errors.
Current Sense Amplifier
A high speed differential current sense amplifier is located in the Phase IC, as shown in Figure 6. Its gain
decreases with increasing temperature and is nominally 34 at 25ºC and 29 at 125ºC (í1470 ppm/ºC). This
reduction of gain tends to compensate the 3850 ppm/ºC increase in inductor DCR. Since in most designs the
Phase IC junction is hotter than the inductor these two effects tend to cancel such that no additional temperature
compensation of the load line is required.
The current sense amplifier can accept positive differential input up to 100mV and negative up to í20mV before
clipping. The output of the current sense amplifier is summed with the DAC voltage and sent to the Control IC
and other Phases through an on-chip 10KŸ UHVLVWRU FRQQHFWHG WR WKH ,6+$5( SLQ 7KH ,6+$5( SLQV RI DOO WKH
phases are tied together and the voltage on the share bus represents the average inductor current through all the
inductors and is used by the Control IC for voltage positioning and current limit protection.
vL
iL L
RL
Vo
Rs
CSA
CO
Cs
vc
Co
Figure 6 – Inductor Current Sensing and Current Sense Amplifier
Average Current Share Loop
Current sharing between phases of the converter is achieved by the average current share loop in each Phase
IC. The output of the current sense amplifier is compared with the share bus less a nominal 20mV offset. If
current in a phase is smaller than the average current, the share adjust amplifier of the phase will activate a
current source that reduces the slope of its PWM ramp thereby increasing its duty cycle and output current. The
crossover frequency of the current share loop can be programmed with a capacitor at the SCOMP pin so that the
share loop does not interact with the output voltage loop.
Page 11 of 45
10/30/2006

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet IR3084A.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
IR3084XPHASETM VR 10/11 CONTROL ICInternational Rectifier
International Rectifier
IR3084AXPHASE TM VR 10/11 CONTROL ICInternational Rectifier
International Rectifier
IR3084UOPTERON/ATHLON64 CONTROL ICInternational Rectifier
International Rectifier

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar