DataSheet.jp


Datasheet X1240S8I PDF ( 特性, スペック, ピン接続図 )

部品番号 X1240S8I
部品説明 Real Time Clock/Calendar with EEPROM
メーカ Xicor
ロゴ Xicor ロゴ 
プレビュー
Total 19 pages
		
11

No Preview Available !

X1240S8I Datasheet, X1240S8I PDF,ピン配置, 機能
Preliminary Information
16K
X1240
2-Wire RTC
Real Time Clock/Calendar with EEPROM
FEATURES
• 2-Wire Interface interoperable with I2C.
—400kHz data transfer rate
• Secondary Power Supply Input with internal
switch-over circuitry.
• Year 2000 Compliant
• 2K bytes of EEPROM
—64 Byte Page Write Mode
—3 bit Block Lock
• Low Power CMOS
—<1µA Operating Current
—<3mA Active Current during Program
—<400µA Active Current during Data Read
• Single Byte Write Capability
• Typical Nonvolatile Write Cycle Time: 5ms
• High Reliability
—1,000,000 Endurance Cycles
—Guaranteed Data Retention: 100 Years
• Small Package Options
—8-Lead SOIC Package, 8L TSSOP Package
DESCRIPTION
The X1240 is a Real Time Clock with clock/calendar
circuits. The dual port clock register allows the clock to
operate, without loss of accuracy, even during read and
write operations.
The clock/calendar provides functionality that is con-
trollable and readable through a set of registers. The
clock, using a low cost 32.768kHz crystal input, accu-
rately tracks the time in seconds, minutes, hours, date,
day, month and years. It has leap year correction,
automatic adjustment for the year 2000 and months
with less than 31 days.
The device offers a backup power input pin. This
Vback pin allows the device to be backed up by a non-
rechargeable battery. The RTC is fully operational
from 1.8 to 5.5 volts.
The X1240 provides a 2K byte EEPROM array, giving
a safe, secure memory for critical user and configura-
tion data. This memory is unaffected by complete fail-
ure of the main and backup supplies.
BLOCK DIAGRAM
32.768kHz
X1
X2
Oscillator
Frequency 1Hz
Divider
Timer
Calendar
Logic
Time
Keeping
Registers
(SRAM)
SCL
SDA
Serial
Interface
Decoder
Control
Decode
Logic
8
Control
Registers
(EEPROM)
Status
Register
(SRAM)
16K
EEPROM
Array
©Xicor, Inc. 1994, 1995, 1996, 1997, 1998, 1999 Patents Pending
9900-3003.5 12/6/99 CM
1
Characteristics subject to change without notice

1 Page



X1240S8I pdf, ピン配列
X1240
the clock on the ACK bit prior to RTC data output) into
a separate latch to avoid time changes during the read
operation. The clock continues to run.
Writing to the Real Time Clock
The time and date may be set by writing to the RTC
registers. To avoid changing the current time by an
uncompleted write operation, the current time value is
loaded into a seperate buffer at the falling edge of the
clock on the ACK bit before the RTC data input bytes,
the clock continues to run. The new serial input data
replaces the values in the buffer. This new RTC value
is loaded back into the RTC Register by a stop bit at
the end of a valid write sequence. An invalid write
operation aborts the time update procedure and the
contents of the buffer are discarded. After a valid write
operation the RTC will reflect the newly loaded data
beginning with the first “one second” clock cycle after
the stop bit. The RTC continues to update the time
while an RTC register write is in progress and the RTC
continues to run during any nonvolatile write sequences.
A single byte may be written to the RTC without affect-
ing the other bytes.
CLOCK/CONTROL REGISTERS (CCR)
The Control/Clock Registers are located in an area
logically separated from the array and are only acces-
sible following a slave byte of “1101111x” and reads or
writes to addresses [0000h:003Fh].
CCR access
The contents of the CCR can be modified by performing
a byte or a page write operation directly to any address in
the CCR. Prior to writing to the CCR (except the status
register), however, the WEL and RWEL bits must be
set using a two step process (See section “Writing to
the Clock/Control Registers.”)
The CCR is divided into 3 sections. These are:
1. Control (2 bytes)
2. Real Time Clock (8 bytes)
3. Status (1 byte)
Sections 1) and 2) are nonvolatile and Section 3) is
volatile. Each register is read and written through buff-
ers. The non-volatile portion (or the counter portion of
the RTC) is updated only if RWEL is set and only after
a valid write operation and stop bit. A sequential read or
page write operation provides access to the contents
of only one section of the CCR per operation. Access
to another section requires a new operation. Contin-
ued reads or writes, once reaching the end of a sec-
tion, will wrap around to the start of the section. A read
or page write can begin at any address in the CCR.
Section 3) is a volatile register. It is not necessary to set
the RWEL bit prior to writing the status register. Section 3)
supports a single byte read or write only. Continued reads
or writes from this section terminates the operation.
The state of the CCR can be read by performing a ran-
dom read at any address in the CCR at any time. This
returns the contents of that register location. Additional
registers are read by performing a sequential read.
The read instruction latches all Clock registers into a
buffer, so an update of the clock does not change the
time being read. A sequential read of the CCR will not
result in the output of data from the memory array. At
the end of a read, the master supplies a stop condition
to end the operation and free the bus. After a read of
the CCR, the address remains at the previous address
+1 so the user can execute a current address read of
the CCR and continue reading the next Register.
3


3Pages


X1240S8I 電子部品, 半導体
X1240
SERIAL COMMUNICATION
Interface Conventions
The device supports a bidirectional bus oriented proto-
col. The protocol defines any device that sends data
onto the bus as a transmitter, and the receiving device
as the receiver. The device controlling the transfer is
called the master and the device being controlled is
called the slave. The master always initiates data
transfers, and provides the clock for both transmit and
receive operations. Therefore, the devices in this fam-
ily operate as slaves in all applications.
Clock and Data
Data states on the SDA line can change only during
SCL LOW. SDA state changes during SCL HIGH are
reserved for indicating start and stop conditions. See
Figure 3.
Start Condition
All commands are preceded by the start condition,
which is a HIGH to LOW transition of SDA when SCL
is HIGH. The device continuously monitors the SDA
and SCL lines for the start condition and will not
respond to any command until this condition has been
met. See Figure 3.
Stop Condition
All communications must be terminated by a stop con-
dition, which is a LOW to HIGH transition of SDA when
SCL is HIGH. The stop condition is also used to place
the device into the Standby power mode after a read
sequence. A stop condition can only be issued after
the transmitting device has released the bus Refer to
Figure 3.
Figure 3. Valid Data Changes on the SDA Bus
SCL
SDA
Data Stable Data Change Data Stable
Figure 4. Valid Start and Stop Conditions
SCL
SDA
Start
Stop
6

6 Page





ページ 合計 : 19 ページ
PDF
ダウンロード
[ X1240S8I.PDF ]

共有リンク

Link :

おすすめデータシート

部品番号部品説明メーカ
X1240S8

There is a function of Real Time Clock/Calendar with EEPROM.

Xicor
Xicor
X1240S8I

There is a function of Real Time Clock/Calendar with EEPROM.

Xicor
Xicor

多くを見つけるデータシート

部品番号部品説明メーカ
82S129

The 82S126 and 82S129 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic fusing procedure. 1K-bit TTL Bipolar PROM, Address access time : 50ns max.

NXP
NXP
D1695

This part is a darlington connection NPN silicon epitaxial transistor. The 2SD1695 is a Darlington connection transistor and incorporates a dumper diode between the collector and emitter and a constant voltage diode and protection elements between the collector and base. This transistor is ideal for drives in solenoid and actuators.

NEC
NEC
FDMS86368

N-Channel Power Trench, 80V, 80A, 4.5mΩ.

Fairchild
Fairchild
2SC2456

Here is a Color TV Horizontal Driver, Vceo=300V, TO-126 Package.

Toshiba
Toshiba

www.DataSheet.jp    |   2018   |  メール    |   最新    |   Sitemap