DataSheet.es    


PDF ADE7752 Data sheet ( Hoja de datos )

Número de pieza ADE7752
Descripción Polyphase Energy Metering IC
Fabricantes Analog Devices 
Logotipo Analog Devices Logotipo



Hay una vista previa y un enlace de descarga de ADE7752 (archivo pdf) en la parte inferior de esta página.


Total 24 Páginas

No Preview Available ! ADE7752 Hoja de datos, Descripción, Manual

Polyphase Energy Metering IC
with Pulse Output
ADE7752/ADE7752A
FEATURES
High accuracy, supports 50 Hz/60 Hz IEC62053-2x
Less than 0.1% error over a dynamic range of 500 to 1
Compatible with 3-phase/3-wire delta and 3-phase/4-wire
Wye configurations
The ADE7752 supplies average real power on frequency
outputs F1 and F2
High frequency output CF is intended for calibration and
supplies instantaneous real power
Logic output REVP indicates a potential miswiring or
negative power for each phase
Direct drive for electromechanical counters and 2-phase
stepper motors (F1 and F2)
Proprietary ADCs and DSP provide high accuracy over large
variations in environmental conditions and time
On-chip power supply monitoring
On-chip creep protection (no load threshold)
On-chip reference 2.4 V ±8% (20 ppm/°C typical) with
external overdrive capability
Single 5 V supply, low power
60 mW typical: ADE7752
30 mW typical: ADE7752A
Low cost CMOS process
GENERAL DESCRIPTION
The ADE7752 is a high accuracy polyphase electrical energy
measurement IC. The ADE7752A is a pin-to-pin compatible
low power version of ADE7752. The functions of ADE7752 and
ADE7752A are the same. Both products are referred to in the
text of this data sheet as ADE7752.
The part specifications surpass the accuracy requirements as
quoted in the IEC62053-2x standard. The only analog circuitry
used in the ADE7752 is in the analog-to-digital converters (ADCs)
and reference circuit. All other signal processing (such as multi-
plication, filtering, and summation) is carried out in the digital
domain. This approach provides superior stability and accuracy
over extremes in environmental conditions and over time.
The ADE7752 supplies average real power information on the
low frequency outputs, F1 and F2. These logic outputs may be
used to directly drive an electromechanical counter or to
interface with an MCU. The CF logic output gives instanta-
neous real power information. This output is intended to be
used for calibration purposes.
The ADE7752 includes a power supply monitoring circuit on
the VDD pin. The ADE7752 remains inactive until the supply
voltage on VDD reaches 4 V. If the supply falls below 4 V, no
pulses are issued on F1, F2, and CF. Internal phase matching
circuitry ensures that the voltage and current channels are
phase matched. An internal no load threshold ensures the part
does not exhibit any creep when there is no load. The ADE7752
is available in a 24-lead SOIC package.
FUNCTIONAL BLOCK DIAGRAM
IAP 5
IAN 6
VAP 16
IBP 7
IBN 8
VBP 15
ICP 9
ICN 10
VCP 14
VN 13
ADC
ADC
ADC
ADC
ADC
ADC
2.4V REF
11
AGND
4kΩ
12
REFIN/OUT
HPF
Φ
PHASE
CORRECTION
HPF
Φ
PHASE
CORRECTION
HPF
Φ
PHASE
CORRECTION
ABS
17
VDD
3
X
LPF
POWER
SUPPLY
MONITOR
ADE7752/
ADE7752A
XΣ
LPF
2 DGND
19 CLKIN
20 CLKOUT
X
LPF
DIGITAL-TO-FREQUENCY CONVERTER
4 18 21 22 23 24 1
REVP SCF S0 S1 F2 F1 CF
Figure 1. 24-Lead Standard Small Outline Package [SOIC]
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice.
No license is granted by implication or otherwise under any patent or patent rights of Analog
Devices.Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
© 2005 Analog Devices, Inc. All rights reserved.

1 page




ADE7752 pdf
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 3.
Parameter
VDD to AGND
VDD to DGND
Analog Input Voltage to AGND
VAP, VBP, VCP, VN, IAP, IAN, IBP, IBN,
ICP, and ICN
Reference Input Voltage to AGND
Digital Input Voltage to DGND
Digital Output Voltage to DGND
Operating Temperature Range
Industrial
Storage Temperature Range
Junction Temperature
24-Lead SOIC, Power Dissipation
θJA Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec)
Infrared (15 sec)
Rating
−0.3 V to +7 V
−0.3 V to +7 V
−6 V to +6 V
−0.3 V to VDD + 0.3 V
−0.3 V to VDD + 0.3 V
−0.3 V to VDD + 0.3 V
−40°C to +85°C
−65°C to +150°C
150°C
88 mW
250°C/W
215°C
220°C
ADE7752/ADE7752A
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those listed in the operational sections
of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. C | Page 5 of 24

5 Page





ADE7752 arduino
TERMINOLOGY
Measurement Error
The error associated with the energy measurement made by the
ADE7752 is defined by the following formula:
Percentage
Error
=
Energy
Registered by
True
ADE7752–True
Energy
Energy
×
100%
Error Between Channels
The high-pass filter (HPF) in the current channel has a phase
lead response. To offset this phase response and equalize the
phase response between channels, a phase correction network is
also placed in the current channel. The phase correction net-
work ensures a phase match between the current channels and
voltage channels to within ±0.1° over a range of 45 Hz to 65 Hz
and ±0.2° over a range of 40 Hz to 1 kHz. See Figure 24 and
Figure 26.
Power Supply Rejection (PSR)
This quantifies the ADE7752 measurement error as a
percentage of reading when the power supplies are varied.
For the ac PSR measurement, a reading at a nominal supply
(5 V) is taken. A 200 mV rms/100 Hz signal is then introduced
onto the supply and a second reading is obtained under the
same input signal levels. Any error introduced is expressed as a
percentage of reading. See definition for Measurement Error.
For the dc PSR measurement, a reading at nominal supplies
(5 V) is taken. The supply is then varied ±5% and a second
reading is obtained with the same input signal levels. Any error
introduced is again expressed as a percentage of reading.
ADE7752/ADE7752A
ADC Offset Error
This refers to the dc offset associated with the analog inputs to
the ADCs. It means that with the analog inputs connected to
AGND, the ADCs still see an analog input signal offset.
However, because the HPF is always present, the offset is
removed from the current channel, and the power calculation is
not affected by this offset.
Gain Error
The gain error of the ADE7752 is defined as the difference
between the measured output frequency (minus the offset) and
the ideal output frequency. The difference is expressed as a
percentage of the ideal frequency. The ideal frequency is
obtained from the ADE7752 transfer function. See the Transfer
Function section.
Rev. C | Page 11 of 24

11 Page







PáginasTotal 24 Páginas
PDF Descargar[ Datasheet ADE7752.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ADE7751Energy Metering IC with On-Chip Fault DetectionAnalog Devices
Analog Devices
ADE7751AAN-REFEnergy Metering IC with On-Chip Fault DetectionAnalog Devices
Analog Devices
ADE7751ANEnergy Metering IC with On-Chip Fault DetectionAnalog Devices
Analog Devices
ADE7751ARSEnergy Metering IC with On-Chip Fault DetectionAnalog Devices
Analog Devices

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar